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Scaling exponents of rough surfaces generated by the Domany-Kinzel cellular automaton
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The critical behavior at the frozen-active transition in the Domany-Kinzel stochastic cellular automaton is
studied via a surface growth process in (111) dimensions. At criticality, this process presents a kinetic
roughening transition; we measure the critical exponents in simulations. Two update schemes are considered:
in the symmetric scheme, the growth surfaces belong to the directed percolation~DP! universality class, except
at one terminal point. At this point, the phase transition is discontinuous and the surfaces belong to the compact
directed percolation universality class. The relabeling of space-time points in the nonsymmetric scheme alters
significantly the surface growth, changing the values of the critical exponents. The critical behavior of rough
surfaces at the nonchaotic-chaotic transition is also studied using the damage spreading technique; the expo-
nents confirm DP values for the symmetric scheme.

DOI: 10.1103/PhysRevE.66.016113 PACS number~s!: 05.10.2a, 02.50.2r, 68.35.Ct, 68.35.Rh
la

ca
t

em
lib
-
iti
a
d

he
in
n

th

a
re
an
t

n

a

hi
th

nd

for

on-
d to
tly,

to

e-
if-
ess.
de

he

er-
n.
en
ical
om-
e

n be
in

the
g,
the

va
ar
,
-

iti-
nd
the
th
I. INTRODUCTION

The one-dimensional Domany-Kinzel stochastic cellu
automaton ~DKCA! is a completely discrete system—
temporally, spatially, and in its state space—with appli
tions in physics, chemistry, biology, computer science, e
@1,2#. The DKCA also attracts interest as a particle syst
affording a test of certain conjectures regarding nonequi
rium critical phenomena@3#. The DKCA has a unique ab
sorbing~‘‘vacuum’’ ! state; its phase diagram presents a cr
cal line separating this absorbing phase from an active ph
Models with one absorbing state have been conjecture
belong generically to the directed percolation~DP! univer-
sality class@4#. There is also good numerical evidence@3#
that the critical behavior along the transition line in t
DKCA belongs to the DP class, except at one of the term
points, where the asymptotic behavior is known exactly a
belongs to the compact directed percolation~CDP! univer-
sality class@1,5,6#. At this terminal point the transition is
discontinuous and we have in fact two absorbing states:
vacuum and the completely filled state. Martinset al. @7#
found a damage spreading transition line separating the
tive phase into a nonchaotic and a chaotic phase. The
numerical evidence that the critical behavior along this tr
sition line also belongs to the DP class, as expected on
basis of universality@8#. It is important to distinguish this
damage spreading transition, involving apair of automata,
from the frozen-active transition, that involves onlyoneau-
tomaton. See the reviews by Hinrichsen@9,10# for a discus-
sion of experimental realizations of directed percolation a
the relation of growth models to DP.

The surface growth process generated by cellular
tomata~CA! was proposed by de Saleset al. @11# to study
Wolfram’s deterministic CA. These authors also used t
process to identify the frozen-active phase transition in
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DKCA @12#, where they showed that the Hurst exponentH
attains a maximum at the transition. Recently, Atman a
Moreira @13# demonstrated that the growth exponentbw also
presents a cusp at criticality, and is more appropriate
detecting phase transitions than the method of de Saleset al.
They used it to construct the DKCA phase diagram and c
jectured that the growth exponent method also can be use
detect phase transitions in other kinds of models. Recen
Redinz and Martins@14# used the Hurst exponent method
find first- and second-order phase transitions in theq-state
Potts model~for q51,3,5, and 10). Bhattacharyya@15# stud-
ied the dynamic critical properties of a related on
dimensional probabilistic cellular automaton, using two d
ferent procedures to generate the surface growth proc
One of them is identical to the growth process studied by
Saleset al. and belongs to DP universality class. Thus, t
conjectures presented by Bhattacharyya@15#, which imply
DP-like scaling for this model are also valid here.

The procedure used by de Saleset al. @12# and by Bhat-
tacharyya@15# transforms the spatiotemporal patterns gen
ated by the DKCA to a solid-on-solid particle depositio
The nature of the resulting interface is an interesting op
question since there are many recipes for mapping dynam
systems to interfaces, and in many cases the outcome is c
pletely unknowna priori. The reason is that sometimes th
interface turns out to have surface tension, and thus ca
expected to be related to a known universality class, while
other cases there is no surface tension. At the critical line,
DKCA surface growth process exhibits kinetic roughenin
and the critical exponents can be measured following
scaling concepts developed by Family and Vicse´k @16#. Very
recently, similar methods were used by Lauritsen and Ala
@17# to study the Edwards-Wilkinson equation with column
noise, by Vespignaniet al. @18# to study sandpile models
and by Dickman and Mun˜oz @19#, to study the contact pro
cess~CP!.

In this work, we measure the scaling exponents at cr
cality in simulations, and compare them with known DP a
CDP values. We use two different schemes to update
automaton, which lead to entirely different surface grow
©2002 The American Physical Society13-1
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scaling properties. In Sec. II, we define the DKCA, descr
the two update schemes, and show how the surface gro
process is generated, at the frozen-active and noncha
chaotic transitions. In Sec. III, we present our numerical
sults and discuss the values obtained, comparing them
the predictions for the scaling exponents proposed by B
tacharyya@15# and Dickman and Mun˜oz @19#. We discuss
our conclusions in Sec. IV.

II. DKCA SURFACE GROWTH PROCESS

A. Model

The DKCA was proposed by Domany and Kinzel@1#,
who showed the existence of two phases:activeand frozen.
A more detailed study, using simulation, was performed
Martins et al. @7#, in which a new phase within the activ
region—achaoticphase—was discovered through the da
age spreading technique.

The DKCA consists of a linear chain ofL sites (i
51,2, . . . ,L), with periodic boundaries, where each sitei
has two possible states, conveniently denoted bys i50,1.
The state of the system at timet is given by the set$s i(t)%.
In contrast to the deterministic CA studied by Wolfram@2#,
the DKCA is probabilistic: the rules for updating the syste
are given by conditional probabilities, which depend on
neighbors. We study two different schemes, one symme
the other nonsymmetric. The symmetric scheme is the or
nal one proposed by Domany and Kinzel@1#, while the non-
symmetric was used@20# to simplify the algorithm.

In the symmetric scheme, the processs i(t) is defined on
space-time points withi 1t even. The state of sitei at time
t11 depends ons i 21(t) ands i 11(t) via the transition prob-
ability P@s i(t11)us i 21(t),s i 11(t)#, which takes the form
P(1u0,1)5P(1u1,0)5p1 , P(1u1,1)5p2 , P(1u0,0)50. Evi-
dently, P(0us i 21 ,s i 11)512P(1us i 21 ,s i 11).

In the nonsymmetric scheme, the process is defined onall
space-time points. The state of sitei at timet11 depends on
s i 21(t) ands i(t), rather than ons i 21(t) ands i 11(t), as in
the symmetric scheme. The transition probabilityP@s i(t
11)us i 21(t),s i(t)# is identical to P@s i(t
11)us i 21(t),s i 11(t)# given above for the symmetric case

It is easy to see that the two schemes are connected
simple relabeling of space-time points~see Fig. 1!. Consider,
for example, ahistory hS in the symmetric scheme, that is,
sequence of configurations$s i

S(t)% for t50, . . . ,T (T fi-

FIG. 1. Spatial representation of DKCA, in symmetric~left! and
nonsymmetric~right! schemes, showing that the spatiotemporal p
terns are identical in the two schemes, i.e., corresponding histo
are identical.
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nite!, starting att50 with a finite number of active sites. Le
the probability of this history, given the initial configuration
be P@hSu$sS(0)%#. A history hNS in the nonsymmetric
scheme can be defined in the same manner. Note that the
a one-to-one correspondence between histories in the
schemes, given by

s i
NS~ t ![s2i 2t

S ~ t !. ~1!

Since the transition probabilities in the two schemes
identical, the probabilities of corresponding histories are
well. To extend this correspondence to systems with perio
boundaries, we note that if the nonsymmetric system haL
sites, then the corresponding symmetric one has 2L sites; in
the mapping defined above, we now takei S52i NS

2t(mod 2L).
An immediate result of this correspondence is that

scaling properties~e.g., critical exponents!, as well as non-
universal properties~e.g., phase boundaries between froz
active, and chaotic phases in thep1-p2 plane!, are identical
in the two schemes. Corresponding histories naturally lo
different in the two schemes: the nonsymmetric scheme
resents a rotating frame of reference in which, moreov
distances are rescaled by a factor of 1/2. Thus, forp151/2
andp251, an interface between domains of 1’s and 0’s e
ecutes an unbiased random walk in the symmetric sche
while in the nonsymmetric case such an interface has a m
velocity of 1/2. The ‘‘light cone’’ i 56t in the symmetric
scheme becomes the pair of linesi 50 and i 5t in the non-
symmetric case. As will be seen below, this difference
frames of reference has important consequences for the
face dynamics in the nonsymmetric scheme.

Depending on the values of the parameters (p1 ,p2), the
asymptotic (t→`) state of the system is eitherfrozen, with
all sites having value 0, or has a finite fraction of sites w
value 1, theactivestate. This is a second-order phase tran
tion, characterized by the critical exponents of the DP u
versality class.

B. Interface representation

The surface growth process consists in accumula
~summing! all the values assumed by the variabless i(t)
over the firstt time steps:

hi~ t ![(
t50

t

s i~t!. ~2!

The differences between the schemes become explicit at
point. In Fig. 2, we show the temporal evolution of the a
tomaton and the profiles generated by the accumula
method, close to criticality (p250.5,p150.75), in each
scheme. It is evident that the two schemes lead to enti
different profiles.~In this figure, we choose an initial cond
tion of a single active site, to highlight the evolution of th
automaton and profiles.!

Thus, we obtain growth processes, the nature of wh
correlations can be investigated through the analysis of
roughnessw(L,t) @21#, defined by

-
es
3-2
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FIG. 2. Interface representa
tion generated by spatiotempora
patterns of the DKCA with differ-
ent update schemes: the symme
ric scheme is shown on the lef
and the nonsymmetric on th
right. Upper panels: spatiotempo
ral patterns of the automata. Blac
sites are active; time increases u
ward. Lower: Interface representa
tion of the patterns shown above
Here, they axis corresponds to the
height h( i ,t) of the profiles@see
Eq. ~2!#, and thex axis to the lat-
tice positionsi. The fill color is
changed after every 50 time step
to highlight the profile roughness
evolution. System sizeL5500 for
the symmetric andL5250 for the
nonsymmetric; 900 time steps ar
shown. Both systems are ver
close to criticality (p250.5, p1

50.75), in the active phase.
s

se,

, are

the
w2~L,t !5
1

L K (
i 51

L

@hi~ t !2h̄~ t !#2L , ~3!

where h̄(t) is the mean value ofhi(t) at time t and the
bracketŝ •••& denote an average over realizations.

We expect thatw(L,t) has the scaling form@16#

w~L,t !;La f S t

LzD , ~4!

where f (u) is a universal scaling function,a is the rough-
ness exponent,z5a/bw is the dynamic exponent, andbw is
01611
the growth exponent. The functionf (u)5const, at large
times (t@Lz), and f (u);ubw at short times (t!Lz). So at
short times, we expectw(t);tbw; we measurebw from the
slope of the log-log plot ofw(L,t) vs t. At large times, the
roughness saturates and becomesL dependent:w(L,`)
;La. The crossover timet3 between these two regime
grows ast3;Lz. The exponentsa andz are defined in the
frozen phase just at the transition line. In the active pha
the roughness does not saturate, growing instead asw(L,t)
;t1/2, corresponding to uncorrelated growth@13#. Thus, the
relations above, used to measure the scaling exponents
valid just at criticality for the DKCA.

The profiles have self-affine properties quantified by
Hurst exponentH, defined via
3-3
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W~e!;eH, ~5!

whereW(e) is the width of the interface on length scalee.
We measure the Hurst exponentH in a profile generated very
close to the transition. We apply the method introduced
Moreiraet al. @22#, valid for self-affine profiles, that consist
in measuring the roughness around the straight line de
mined by a least-squares fit to a segment of the profile.
roughnessW(L,e,t), at the scalee, is given by

W~L,e,t !5
1

L (
i 51

L

wi~e,t !, ~6!

where the local roughnesswi(e,t) is defined by

wi
2~e,t !5

1

2e11 (
j 5 i 2e

j 5 i 1e

$hj~ t !2@ai~e!xj1bj~e!#%2,

whereai(e) andbi(e) are the linear fitting parameters to th
profile on the interval@ i 2e,i 1e# centered at sitei.

C. Damage spreading

Martinset al. @7# used the damage spreading technique
show that the active phase of the DKCA in fact consists
two phases, chaotic and nonchaotic. The order paramet
this transition is the difference between two replicas star
with different initial configurations. One allows the system
evolve until it attains a stationary state, and then a replica
the configuration is created with some sites altered~damage!.
The two replicas, one with states i(t) and the other with
state% i(t), evolve with the same sequence of random nu
bers, and the difference between the configurations

G i~ t !5us i~ t !2% i~ t !u,

is measured. The fraction of sites in the two replicas w
s iÞ% i is called the Hamming distance, defined as

DH~ t !5
1

L (
i

G i~ t !.

The stationary Hamming distance is null in the nonchao
phase and positive in the chaotic phase.

To study the chaotic-nonchaotic boundary, we use
slightly different method, where the difference between
two automata is used to generate the surface growth proc
as we did in the accumulation method

hi~ t !5 (
t50

t

G i~t!. ~7!

Thus, the profile generated by the difference between
replicas behaves exactly as the profiles generated in
frozen-active boundary: the roughness reaches a statio
value in the nonchaotic phase and grows indefinitely in
chaotic phase. This behavior can be understood if we n
that the difference between the replicas vanishes in the n
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chaotic phase, which implies no contribution to the heig
hi(t), and is positive in chaotic phase, implying stea
growth in the height.

In order to preserve the stationary density of active s
we generate a ‘‘rotation’’ damage at a certain timet0, in
which the replica is rotated 180° with respect to the origin
system, that is%( i ,t0)5s( i 1L/2,t0), subject to the periodic
boundary condition.

D. Theoretical descriptions

One of the first theoretical analyses of critical growth e
ponents in the DP universality class was presented
Kértesz and Wolf@23#, who considered a polynuclear growt
model. Theoretical descriptions of surface growth scaling
absorbing-state phase transitions were proposed by Bh
charyya@15#, and Dickman and Mun˜oz @19#. Bhattacharrya
proposed an analytical treatment in analogy to the rand
deposition~RD! process. We clarify that this is not a gener
description, being valid only at criticality. Considering a
initial disordered state, the growth process can be descr
by a continuum equation, very similar to the RD process

]h~x,t !

]t
5F1h~x,t ! ~RD!, ~8!

where F is the average number of deposited particles a
h(x,t) corresponds to the white noise (^h(x,t)&50) in the
deposition.

The difference between the surface growth processes
erated by DKCA and RD lies in the noise correlations. Wh
RD involves spatially and temporally uncorrelated noise,
correlations in time and space developing in the DKCA a
pears in the noise fluctuations of the accumulation meth
For values of (p1,p2) away from the critical line~in the
active phase!, the correlation lengthj and correlation timet
of the DKCA are finite, which means that the noise in t
deposition process is correlated over short ranges. In
limit the noise autocorrelation decays exponentially@21#:

^h~x,t !,h~x8,t8!&;e2ux2x8u/je2ut2t8u/t. ~9!

Thus, the noise appears uncorrelated for times gre
thant, and the RD exponents are obtained in this limit. Th
behavior was confirmed in earlier simulations@13#. As we
approach the transition line,j and t increase, and it takes
longer for the growth process to reach the RD limit. Final
at the critical line, bothj andt diverge, and the correlation
are long ranged represented by a power law decay of
noise autocorrelation@21#

^h~x,t !,h~x8,t8!&;ux2x8u22b/n'ut2t8u22b/n i, ~10!

whereb, n' , andn i are, respectively, the critical exponen
for the order parameter, correlation length, and correlat
time of the DKCA.
3-4
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The value of the growth exponentbw at the critical line
can be derived from the continuum equation~8! and the
noise~10!; the heighth(x,t) can be obtained integrating Eq
~8!,

h~x,t !5E
0

t

dtF1E
0

t

dth~x,t!. ~11!

If we now let h(x,t)→h(x,t)2Ft, considering only the
fluctuations around the mean height, we can write the me
square roughness, which is the variance ofh(x,t), as

var@h~x,t !#5E
0

t

dtE
0

t

dt8^h~x,t!h~x,t8!&. ~12!

Thus, using Eq.~10!, making the change of variablesv
5t2t8, we obtain

w2~ t !;E
0

t

dtE
v0

t

dvv22b/n i;E
0

t

dt~v122b/n i!v0

t ;t222b/n i.

~We take the lower limit of integration asv0;1, since Eq.
~10! holds for ut2t8u*1, and the scaling behavior arise
from the decay of correlations at large spatial and temp
separations.! This implies that the width for an infinite sub
strate, for the symmetric scheme, follows the power law:

w~`,t !;t12b/n i. ~13!

As it is believed that this transition belongs to the DP u
versality class, considering the exponent values furnished
Jensen@24#, the value of growth exponent is expected to

bw512
b

n i
512

0.276 49

1.733 825
.0.8405.

For the nonsymmetric scheme, due the corresponde
between histories in the two schemes described by Eq.~1!,
the height is defined by

h~x,t !5E
0

t

dth~2x2t,t!, ~14!

yielding to

var@h~x,t !#5E
0

t

dtE
0

t

dt8^h~2x2t,t!h~2x2t8,t8!&

5E
0

t

dtE
0

t

dv^h~f2v,t81v!h~f,t8!&,

~15!

wheref52x2t8. Thus, using Eq.~10!

w2~ t !;E
0

t

dtE
v0

t

dvuvu22b(1/n i11/n');t222b(1/n i11/n').

This implies that the width for an infinite substrate, for t
nonsymmetric scheme, increases as the following powe
the time:
01611
n-

al

-
by

ce

of

wNS~`,t !;t12b(1/n i11/n'). ~16!

Considering@24# n'51.096 854, the value of growth expo
nent in the nonsymmetric scheme is expected to be

bw.0.588 46,

in agreement with the value found in earlier simulations@13#.
In previous work@13#, Atman and Moreira showed tha

bw attains a maximum at the phase transition~see Fig. 3!,
and measured its value along the transition line of
DKCA. This behavior of the exponentbw in the vicinity of
the phase transition can be understood as follows.
growth ratedhi /dt at site i is proportional~in the frame of
reference moving with the average velocityd^h&/dt) to the
excessactivity at that site. Away from the critical point, th
activity has a finite correlation lengthj and correlation time
t. Thus on scales much greater thanj, t, the noise driving
the surface growth is uncorrelated, and this process fall
the RD class, withbw51/2. At the critical point, by contrast
j and t diverge and we have instead the scaling relat
bw512u @19#, where the exponentu is defined through the
relationr(t);t2u for the initial decay of the activity density
r at the critical point, starting fromr(0)51. Since, in one
dimension, 12u.1/2, we expect a jump inbw at the phase
boundary. In simulations of finite-sized systems, we exp
not a discontinuity inbw but a sharp peak at the transition
see Fig. 3~very near to the critical point,j.L, so that inde-
pendently fluctuating regions are not present in the simu
tion!. Below the transition, the apparent value ofbw→0 due
to the short lifetime of the activity. It is interesting to no
that for the DP universality class, 12u.0.55,0.27, and 0 for
d52,3, and 4, respectively. Thus we should expectbw to
decreaseat the phase boundary ind53.

FIG. 3. Growth exponentbw in the DKCA for several system
sizes in the symmetric scheme. Note thatbw attains a maximum at
the frozen-active transition and depends strongly on the system
The transition point was chosen as thebw value at system sizeL
510 000, where we observe a sharp transition. In this exam
p250.5 andp150.749.
3-5
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TABLE I. Summary of the scaling exponents values,d51.

Previous work a bw z H

DP 1.3286 0.8405 1.5808 0.643
CP ~simulational! @19# 1.33 0.839~1! 0.63~3!

CA ~simulational! @15# 0.837~11!

CDP 2 1 2 1
Present work—symmetric scheme
Frozen-activep250.5 1.32~1! 0.82~2! 1.59~1! 0.61~3!

Frozen-activep251 2.01~1! 0.99~1! 2.08~5! 0.99~2!

Nonchaotic-chaoticp151 1.325~9! 0.81~1! 1.61~1! 0.60~3!

Nonchaotic-chaoticp250 1.32~1! 0.78~2! 1.64~2! 0.61~3!

Present work—nonsymmetric scheme
Frozen-activep250.5 0.92~7! * 1.58~4! 0.26~6!

Frozen-activep251 0.984~7! * 1.9~1! 0.501~25!

Nonchaotic-chaoticp151 0.93~1! * 1.67~2! 0.30~2!

Nonchaotic-chaoticp250 0.910~7! * 1.66~1! 0.28~3!
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Since the saturation of surface width is forced by t
DKCA, the crossover timet3 behaves exactly as in DP, an
the dynamic exponent is given by

t3;Lz, z5zDP5n i /n'.1.5808. ~17!

Thus, the roughness exponent at the criticality is given b

a5zbw.1.3286. ~18!

Dickman and Mun˜oz @19# studied the contact process u
ing the surface growth representation. They demonstra
that the Hurst exponent shows clear signs of anomalous s
ing (a.H), but no evidence of multiscaling. They verifie
López’ scaling relation @25#: H5a2zk. Here, k
50.4336(4) is the exponent associated with the diverge
of the mean-square height gradient in the continuum gro
equation that describes the contact process and related
els, such as DP. Inserting the known values in the rela
above we have for the Hurst exponent in the DP class:

H5a2zk.0.643. ~19!

III. RESULTS

In Table I, we summarize our results for the scaling e
ponents at the frozen-active and nonchaotic-chaotic tra
tions, and compare them with the values for the DP and C
universality classes.

To extract the exponent values from our simulation da
we used the relationsw(L,`);La, valid at large times,
w(L,t);tbw, valid at short times andt3(L);Lz. The results
show a strong dependence on the scheme used—symm
or nonsymmetric. In the simulations, we average 10 0
5000, 2500, 1000, 500, 250, and 100 samples at the cri
point (p2

c ,p1
c) in systems withL550, 100, 200, 500, 1000

2000, and 5000 sites, respectively. The initial condition
these samples was random, with 50% of sites active.

The Hurst exponent was measured following the pro
dure explained in Sec. II B. The results, shown in Table
01611
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represent an average over 100 random initial configurati
in a system withL510 000. We observe a significant chan
in the value of the Hurst exponent depending on the sche
used to update the automaton: in the symmetric scheme
haveH.1/2, denoting a positive correlation in the profile;
the nonsymmetric schemeH50.25(3), denoting a negative
correlation. This behavior can be understood considering
nonsymmetric scheme as a deposition over a moving re
ence frame, which implies a lateral propagation of corre
tions.

FIG. 4. Dynamic exponentz for the DKCA interface represen
tation. The densityr(t) of active samples as a function of time fo
several system sizes is shown, for the symmetric schemep2

50.5,p150.749). The horizontal line highlights the valuer51/2,
which corresponds to the crossover time. The inset shows the c
over timet3 in function of the system sizes. The slope of this cur
is the value of the dynamical exponentz. The error bars are calcu
lated considering an error of 1% in the number of samples froze
a given time.
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A. Symmetric scheme

For the symmetric scheme, our results for the critical
ponents agree with the DP values, except at terminal p
p251 where CDP values were obtained. The critical poi
(p2

c ,p1
c) were determined through the growth expone

method@13# ~Fig. 3!. This method consists in fixingp2 and
varying p1 until the maximum of the growth exponentbw is
attained.

To determine the crossover timet3(L), we plot the frac-
tion of realizations with at least one active site as a funct
of time ~see Fig. 4!, and define the crossover time such th
half of the initial sample has frozen. The inset of Figure
shows the power law behavior of the crossover time;
slope of this line corresponds to the exponentz.

To obtain the saturation width, we let all samples evo
to the absorbing state, at a given system size, and deter
the final averaged roughness. The exponenta was measured
as the slope ofw(L,`) vs L in a log-log plot. In Fig. 5, we
present the results for the saturation roughness in the ca
directed percolation (p250.5, p150.749, symmetric!, di-
rected percolation (p250,p150.8095, damage spreading!,
compact directed percolation (p251, p150.5, symmetric!,
and nonsymmetric DP (p250.5, p150.749, nonsymmetric!.

In order to verify Family-Vicse´k scaling, we use the mea
sured values for the scaling exponents to collapse the w
curves at different system sizes to a single curve, as show
Fig 6. Note the collapse of the width curves, corroborat
the Family-Vicék scaling relation.

FIG. 5. Roughness exponenta for the DKCA interface repre-
sentation. Four cases are shown: directed percolation (p250.5, p1

50.749 symmetric!, directed percolation (p250, p150.8095 dam-
age spreading!, compact directed percolation (p251, p150.5 sym-
metric!, and nonsymmetric DP (p250.5, p150.749 nonsymmet-
ric!. The line is the power law regression for the data and furnis
the value of the roughness exponenta. The error bars are the stan
dard deviations of the saturation width over realizations at e
system size.
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It is important to note that the exponentsbw andz mea-
sured for the chaotic-nonchaotic transition atp250 are
slightly different from the exponents measured away fro
this point. This can represent evidence of long-range co
lations due the coincidence of the damage spreading
frozen-active transitions at this point, as pointed out
Grassberger@8#, but also is consistent to corrections to sc

FIG. 7. Profile roughness behavior for a nonsymmetric sche
Note the two regimes in thew(L,t) vs t curve; fort&L we have a
strongly correlated regime withbw;0.65 and forL,t,t3 , a
weakly correlated regime withbw;0.45.

s

h

FIG. 6. Family-Vicse´k scaling. Upper panel: the width of th
generated profiles at different system sizes. Lower: collapse of
curves above using the exponent values measured through nu
cal simulation at the criticality (p250.5, p150.749).
3-7
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ing. At this moment we are not able to perform calculatio
to distinguish these effects.

B. Nonsymmetric scheme

A significant change in the roughening occurs in the n
symmetric scheme, as shown in Fig 7; we observe two
tinct regimes in the roughness growth: a strongly correla
regime, for timest&L, and a weak correlation regime, fo
longer times. Again, this behavior can be understood by c
sidering the nonsymmetric scheme as deposition in a mo
reference frame. The correlations inherent in the dynam
are propagated by the moving reference frame until t
reach the system size; then the correlations due the l
rules of the automaton take over, decreasing the growth
of the roughness. These two regimes for the roughn
growth implies that is not possible to collapse all the curv
using the Family-Vics´ek scaling law.

The apparent exponent values measured in the nons
metric scheme are markedly smaller:a;0.92(1) for
nonchaotic-chaotic and frozen-active transitions; atp2
51,p150.5, a;0.984(7). As discussed above, the growt
exponent presents two values, depending on the rough
growth regime.~The * in the Table I denotes this behavior!
The dynamic exponentz must assume the DP value, as d
a

.N
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cussed in Sec. II A; in fact,z;1.6(1) for nonchaotic-chaotic
and frozen-active~at p2Þ1) transitions, whilez;1.9(1) at
p251,p150.5.

IV. CONCLUSIONS

Growth surfaces generated by the spatiotemporal patt
of the DKCA along its critical lines are studied. The critic
roughening exponents, expected to belong to the DP uni
sality class, were measured using power law relations v
at criticality. Except for the terminal pointp251, all the
scaling exponents agree with the DP values, in the symme
scheme, and the scaling lawbw5a/z remains valid. Atp2
51, we confirm CDP values for the exponents. Since
fluctuations in uncorrelated regions are effectively sup
posed, it is not surprising that the apparent values ofbw and
a are smaller in the nonsymmetric scheme. At t
nonchaotic-chaotic transition, the exponents measured
agree with the DP values.
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